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CHAPTER 7

INTEGRATION TECHNIQUES
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The first piece is easily integrated, and the second piece now qualifies for the methods
described in this section.

SUMMARY Partial Fraction Decompositions

Let f(x) = p(x)/q(x) be a proper rational function in reduced form. Assume the

denominator ¢ has been factored completely over the real numbers and m is a posi-
tive integer.

1. Simple linear factor A factor x — r in the denominator requires the partial

fraction
X =5F

2. Repeated linear factor A factor (x — r)™ with m > 1 in the denominator re-
quires the partial fractions

Al A?. AS Am
+ - o —
-1 (x-=rF (x-r) (x—r)"

3. Simple irreducible quadratic factor An irreducible factor ax® + bx + ¢ in
the denominator requires the partial fraction

Ax + B
ax* + bx + ¢

4. Repeated irreducible quadratic factor (See Exercises 67-70.) An irreducible

factor (ax* + bx + ¢)™ with m > 1 in the denominator requires the partial
fractions

Alx =k B]

Ayx + B, A.x + B

mn m

ax® + bx ke (ax' + bx +0)f

(ax?’ + bx + c)""

SECTION 7.4 EXERCISES
Review Questions

1. What kinds of functions can be integrated using partial fraction
decomposition?

Give an example of each of the following,
a. A simple linear factor
b. A repeated linear factor

¢ Asimple irreducible quadratic factor
d. A repeated irreducible quadratic factor

What term(s) should appear in the partial fraction decomposition
of a proper rational function with each of the following?

A A factor of x — 3 in the denominator

b. A factor of (x — 4)? in the denominator

& Afactor of x> + 2x + 6 in the denominator

2
3 ¥ 25—
4 Whatis the first step in integrating %‘g?
X
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9-18. Simple linear factors Evaluate the following integrals.
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19-25. Repeated linear factors Evaluate the following integrals.

X
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26-29. Setting up partial fraction decompositions Give the appro-
priate form of the partial fraction decomposition for the following
functions.
2 20x

- (o= 6x-+19) 2 (x — DXx* + 1)

g 2870
2 B+ 1) = (x* — 8x + 16)(x* + 3x + 4)
30-36. Simple irreducible quadratic factors Evaluate the following
integrals.

_B®+2
. x(2* + 5x + 8)

z+1
2., | ——5——<dz
= /Z(z2+4)
+
fZch ldx
x-+ 4
6 —Jlf—‘dy
N )

Further Explorations ‘
37. Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.

__J‘,'l—‘——dx
M / (x — H)(E + 2% + 6)

2

33, IS . PR .
(x — ) + 4x +5)

x dx
35. _/\x3-x2+4x#‘4

4x5 . ;
a. To evaluate / m dx, the first step is to find the partial

fraction decomposition of the integrand.

! dx is with a partial
X

X 6x +
b. The easiest way to evaluate 32 &
fraction decomposition of the integrand.

1 -
: . = —————has an Iire-
¢. The rational function f' (x) X — 13x + 42

ducible quadratic denominator.

1 :
i . —————— ———has an ure-
d. The rational function f(x) 2 _ 3% + 43

ducible quadratic denominator.

11 38-41. Areas of regions Find the area of the following J.regi.ons. In .
each case, graph the relevant functions and show the region in question.

38. The region bounded by the curve y = x/(1 + x), the x-axis, and
the line x = 4.

39, The region bounded by the curve y = 10/(x* — 2x — 24), the
x-axis, and the lines x = —2and x = 2.

40. The region bounded by the curves y = 1/x,y = x/(x + 4), and
the line x = 10.

2 pslii o
; B
41. The region bounded entirely by the curve y = 2 dp=5 -

the x-axis.

42-47. Volumes of solids Find the volume of the following solids.

42. The region bounded by y = 1/(x + 1),y =0,x=0, andx = 2
is revolved about the y-axis.

43. The region bounded by y = x/(x + 1), the x-axis, and x = 4is
revolved about the x-axis.

44. The region bounded by y = (1 — X2 andy = 4is revolved
about the x-axis.

1 —
45. The region bounded by y = 7\/—;?—;)’ y=0,x=1,and

x = 2 is revolved about the x-axis.

46. The region bounded by y = ,y=0,x= -1, and

x = 1 is revolved about the x-axis.

0,andx = 3

47. The region bounded by y = 1/(x + 2),y =0,x
'is revolved about the line x = —1.
48. What’s wrong? Explain why the coefficients A and B cannot be
found if we set
L B
(x—4)(x+5 x—4 % i

49-59. Preliminary steps The following integrals require a preli.mi-
nary step such as long division or a change of variables before using
partial fractions. Evaluate these integrals.

P |
49 o 50. j 3 dx
1t X+ 9x
- 23+ 2 —6x+ 7
3_x2 + 4dx 6 dx 52, [_x__z————-—‘;—-— dx
2 —-3x+2 XX
dx :
dt BN g
53. / = 54- /ex + e?.x A
2+e I
55 _Ec_Ldg 56. /\/e"-!— 1dx 1‘
' 1+ sin@ §
§

& 5 f cos X i
7. [ + ) it = 4sin)

9 dx
e (e + e

60—65. Fractional powers Use the indicated substitution to conveﬂj
the given integral to an integral of a rational function. Evaluate theT®
sulting integral.

@ [—F— x=4
N
61./ a3 ;x+2=u4
Yx+2+1

;1+2x=u2

dx
62. _[xvl + 2x

p,i 66. Arc length of the natural logarithm Consider the curve y = In x.

E

6

dx
63. /-—"; xX=u
Vi+ Vx
dx

4

64.

x = (4 — 1)?

dx
@ fpaii
1+ Vx

a. Find the length of the curve from x = 1 to x = a and call it

L(a). (Hint: The change of variables u = Vx* + 1 allows
evaluation by partial fractions.)

b. Graph L(a).
¢. As aincreases, L(a) increases as what power of a?

67-70. Repeated quadratic factors Refer to the summary box on
p. 483 and evaluate the following integrals.

67 / - 68 f i
ol (24 1) ; S (e D+ 2x + 20
X x*+ 1
} dx 70. PSS (1|
& /(x = 1)(x* + 2x + 2)? * _/x(x2 + x4+ 1)? -

dx
71. Two methods Evaluate / 71 for x > 1 in two ways: using
X

partial fractions and a trigonometric substitution. Reconcile your
two answers.

72-78. Rational functions of trigonometric functions An integrand
with trigonometric functions in the numerator and denominator can
often be converted to a rational integrand using the substitution

u = tan (x/2) or x = 2tan”" u. The following relations are used in
making this change of variables.

2 2u 2

i 1 —u
zd“ B: sinx = -y
1+ u 1+ u

1+ u?

Sy = C: cosx =

1

o

. Verify relation A by differentiating x = 2 tan™' w. Verify relations

B and C using a right-triangle diagram and the double-angle
formulas

sinx = 2 sin (%) cos (%) and cos x = 2 cos® (%) =3 E

3. Evaluate f _dx_ 74, Evaluate __dx_
1 + sinx 2 + cosx
7 ax

. Evaluate / L
1 — cosx

n. Evaluate f __L
cosf — sinf’

76. Evaluate / T R ——
1 + sinx + cosx

78. Evaluate f sect dt.
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Applications
79. Three start-ups Three cars, A, B, and C, start from rest and
accelerate along a line according to the following velocity

functions:
(] = 8 0 = 88 veld] = 88
A t+1 - (¢+12 ¢ 2+ 1
a. Aftert = 1s, which car has traveled farthest?

b. Aftert = 5s, which car has traveled farthest?

c¢. Find the position functions for the three cars assuming that all
cars start at the origin.

d. Which car ultimately gains the lead and remains in front?

1180. Skydiving A skydiver has a downward velocity given by

1 = e*Zgr/V
o0 =V )
where ¢ = 0 is the instant the skydiver starts falling, g =~ 9.8 m/s’

is the acceleration due to gravity, and V is the terminal velocity of
the skydiver.

a. Evaluate v(0) and lirgo o(t) and interpret these results.
g
b. Graph the velocity function.
. Verify by integration that the position function is given by

i ¢ L el
s(t) = Vi + ~gm1n (—2—)

where s'(f) = () and s(0) = 0.
d. Graph the position function.

(See the Guided Projects for more details on free fall and terminal
velocity.)

Additional Exercises

22 22
8l. w < F One of the earliest approximations to r is Ch Verify

Ll — %)t 22
that 0 < ———— —dx = — — «. Why can you conclude
o | +x 7

that m < -2—2'?
7k

=]

2. Challenge Show that with the change of variables u = Vitan x,
the integral f V'tan x dx can be converted to an integral amenable

v : 4
to partial fractions. Evaluate fﬂﬁ/ Vtan x dx.

QUICK CHECK ANSWERS

1. In|lx — 2|+ 2In|x + 4| = In|(x — 2)(x + 4)|

2. Af(x — 1)+ Bf(x + 5) + C/(x — 10)

3. A/x + B/x* + C/(x — 3) + D/(x — 3)* + E/(x — 1)




