7.4 Partial Fractions

483

$$\int \frac{7x^2 - 13x + 13}{(x - 2)(x^2 - 2x + 3)} dx = \int \frac{5}{x - 2} dx + \int \frac{2x + 1}{x^2 - 2x + 3} dx.$$

Let's work on the second (more difficult) integral. The substitution $u = x^2 - 2x + 3$ would work if du = (2x - 2) dx appeared in the numerator. For this reason, we write the numerator as 2x + 1 = (2x - 2) + 3 and split the integral:

as
$$2x + 1 = (2x - 2) + 3$$
 and spars
$$\int \frac{2x + 1}{x^2 - 2x + 3} dx = \int \frac{2x - 2}{x^2 - 2x + 3} dx + \int \frac{3}{x^2 - 2x + 3} dx$$

Assembling all the pieces, we have

Assembling all the pieces, where
$$\int \frac{7x^2 - 13x + 13}{(x - 2)(x^2 - 2x + 3)} dx$$

$$= \int \frac{5}{x - 2} dx + \int \frac{2x - 2}{x^2 - 2x + 3} dx + \int \frac{3}{x^2 - 2x + 3} dx$$

$$= 5 \ln|x - 2| + \ln|x^2 - 2x + 3| + \frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{x - 1}{\sqrt{2}}\right) + C \quad \text{Integrate.}$$

$$= \ln|(x - 2)^5(x^2 - 2x + 3)| + \frac{3}{\sqrt{2}} \tan^{-1} \left(\frac{x - 1}{\sqrt{2}}\right) + C \quad \text{Property of logarithms}$$

To evaluate the last integral $\int \frac{3 dx}{x^2 - 2x + 3}$, we completed the square in the denominator and used the substitution u = x - 1 to produce $\int \frac{3 du}{u^2 + 2}$, which is a standard form.

Related Exercises 30-36

Final Note The preceding discussion of partial fraction decomposition assumes that f(x) = p(x)/q(x) is a proper rational function. If this is not the case and we are faced with an improper rational function f, we divide the denominator into the numerator and express f in two parts. One part will be a polynomial, and the other will be a proper rational func tion. For example, given the function

$$f(x) = \frac{2x^3 + 11x^2 + 28x + 33}{x^2 - x + 6}$$

we perform long division:

$$\begin{array}{r}
 2x + 13 \\
 x^2 - x + 6 \overline{\smash)2x^3 + 11x^2 + 28x + 33} \\
 \underline{2x^3 - 2x^2 + 12x} \\
 13x^2 + 16x + 33 \\
 \underline{13x^2 - 13x + 78} \\
 \underline{29x - 45}
 \end{array}$$

It follows that

$$f(x) = \underbrace{2x + 13}_{\text{polynomial easy to integrate}} + \underbrace{\frac{29x - 45}{x^2 - x + 6}}_{\text{apply partial fraction decomposition}}$$

The first piece is easily integrated, and the second piece now qualifies for the methods described in this section.

SUMMARY Partial Fraction Decompositions

Let f(x) = p(x)/q(x) be a proper rational function in reduced form. Assume the denominator q has been factored completely over the real numbers and m is a posi-

- 1. Simple linear factor A factor x r in the denominator requires the partial fraction $\frac{A}{r-r}$
- 2. Repeated linear factor A factor $(x-r)^m$ with m>1 in the denominator requires the partial fractions

$$\frac{A_1}{(x-r)} + \frac{A_2}{(x-r)^2} + \frac{A_3}{(x-r)^3} + \dots + \frac{A_m}{(x-r)^m}.$$

3. Simple irreducible quadratic factor An irreducible factor $ax^2 + bx + c$ in the denominator requires the partial fraction

$$\frac{Ax+B}{ax^2+bx+c}.$$

4. Repeated irreducible quadratic factor (See Exercises 67–70.) An irreducible factor $(ax^2 + bx + c)^m$ with m > 1 in the denominator requires the partial

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}.$$

SECTION 7.4 EXERCISES

Review Questions

- 1. What kinds of functions can be integrated using partial fraction decomposition?
- 2. Give an example of each of the following.
 - a. A simple linear factor
 - b. A repeated linear factor
 - c. A simple irreducible quadratic factor
 - d. A repeated irreducible quadratic factor
- 3. What term(s) should appear in the partial fraction decomposition of a proper rational function with each of the following?
 - a. A factor of x 3 in the denominator
 - **b.** A factor of $(x-4)^3$ in the denominator
 - c. A factor of $x^2 + 2x + 6$ in the denominator
- 4. What is the first step in integrating $\frac{x^2 + 2x 3}{x + 1}$?

5-8. Setting up partial fraction decomposition Give the appropriate form of the partial fraction decomposition for the following

$$5. \quad \frac{2}{x^2 - 2x - 8}$$

6.
$$\frac{2}{x^2 - 2x - 8}$$

7.
$$\frac{x^2}{x^3 - 16x}$$

7.
$$\frac{x^2}{x^3 - 16x}$$
 8. $\frac{x^2 - 3x}{x^3 - 3x^2 - 4x}$

9-18. Simple linear factors Evaluate the following integrals.

$$9. \quad \int \frac{dx}{(x-1)(x+2)}$$

9.
$$\int \frac{dx}{(x-1)(x+2)}$$
 10. $\int \frac{8}{(x-2)(x+6)} dx$

11.
$$\int \frac{3}{x^2 - 1} dx$$
 12. $\int \frac{dt}{t^2 - 9}$

$$12. \quad \int \frac{dt}{t^2 - 9}$$

13.
$$\int \frac{2}{x^2 - x - 6} dx$$

14.
$$\int \frac{3}{x^3 - x^2 - 12x} dx$$

$$15. \quad \int \frac{dx}{x^2 - 2x - 24}$$

15.
$$\int \frac{dx}{x^2 - 2x - 24}$$
 16.
$$\int \frac{y+1}{y^3 + 3y^2 - 18y} dy$$

17.
$$\int \frac{1}{x^4 - 10x^2 + 9} dx$$
 18. $\int \frac{2}{x^2 - 4x - 32} dx$

$$18. \int \frac{2}{x^2 - 4x - 32} \, dx$$

19-25. Repeated linear factors Evaluate the following integrals

19.
$$\int \frac{3}{x^3 - 9x^2} dx$$

19.
$$\int \frac{3}{x^3 - 9x^2} dx$$
 20. $\int \frac{x}{(x - 6)(x + 2)^2} dx$

$$21. \quad \int \frac{x}{(x+3)^2} \, dx$$

21.
$$\int \frac{x}{(x+3)^2} dx$$
 22.
$$\int \frac{dx}{x^3 - 2x^2 - 4x + 8}$$

485

23.
$$\int \frac{2}{x^3 + x^2} dx$$
 24. $\int \frac{2}{t^3(t+1)} dt$

25.
$$\int \frac{x-5}{x^2(x+1)} dx$$

26-29. Setting up partial fraction decompositions Give the appropriate form of the partial fraction decomposition for the following functions.

$$26. \ \frac{2}{x(x^2-6x+9)}$$

26.
$$\frac{2}{x(x^2-6x+9)}$$
 27. $\frac{20x}{(x-1)^2(x^2+1)}$

28.
$$\frac{x^2}{x^3(x^2+1)}$$

29.
$$\frac{2x^2+3}{(x^2-8x+16)(x^2+3x+4)}$$

30-36. Simple irreducible quadratic factors Evaluate the following integrals.

30.
$$\int \frac{x^2 + 2}{x(x^2 + 5x + 8)} dx$$

30.
$$\int \frac{x^2 + 2}{x(x^2 + 5x + 8)} dx$$
 31.
$$\int \frac{2}{(x - 4)(x^2 + 2x + 6)} dx$$

32.
$$\int \frac{z+1}{z(z^2+4)} dz$$

33.
$$\int \frac{x^2}{(x-1)(x^2+4x+5)} \, dx$$

$$34. \quad \int \frac{2x+1}{x^2+4} \, dx$$

34.
$$\int \frac{2x+1}{x^2+4} dx$$
 35. $\int \frac{x^2}{x^3-x^2+4x-4} dx$

$$36. \int \frac{1}{(y^2+1)(y^2+2)} \, dy$$

Further Explorations

- 37. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** To evaluate $\int \frac{4x^6}{x^4 + 3x^2} dx$, the first step is to find the partial fraction decomposition of the integrand.
 - **b.** The easiest way to evaluate $\int \frac{6x+1}{3x^2+x} dx$ is with a partial fraction decomposition of the integrand
 - c. The rational function $f(x) = \frac{1}{x^2 13x + 42}$ has an irreducible quadratic denominator.
 - **d.** The rational function $f(x) = \frac{1}{x^2 13x + 43}$ has an irreducible quadratic denominator.
- 38–41. Areas of regions Find the area of the following regions. In each case, graph the relevant functions and show the region in question.
- 38. The region bounded by the curve y = x/(1 + x), the x-axis, and the line x = 4.
- 39. The region bounded by the curve $y = 10/(x^2 2x 24)$, the x-axis, and the lines x = -2 and x = 2.
- **40.** The region bounded by the curves y = 1/x, y = x/(3x + 4), and
- 41. The region bounded entirely by the curve $y = \frac{x^2 4x 4}{x^2 4x 5}$ and the x-axis.

- 42-47. Volumes of solids Find the volume of the following solids.
- **42.** The region bounded by y = 1/(x + 1), y = 0, x = 0, and x = 2is revolved about the y-axis.
- 43. The region bounded by y = x/(x + 1), the x-axis, and x = 4 is revolved about the x-axis.
- **44.** The region bounded by $y = (1 x^2)^{-1/2}$ and y = 4 is revolved
- 45. The region bounded by $y = \frac{1}{\sqrt{x(3-x)}}$, y = 0, x = 1, and x = 2 is revolved about the x-axis.
- 46. The region bounded by $y = \frac{1}{\sqrt{A-x^2}}$, y = 0, x = -1, and x = 1 is revolved about the x-axis
- **47.** The region bounded by y = 1/(x + 2), y = 0, x = 0, and x = 3is revolved about the line x = -1.
- 48. What's wrong? Explain why the coefficients A and B cannot be

$$\frac{x^2}{(x-4)(x+5)} = \frac{A}{x-4} + \frac{B}{x+5}.$$

49-59. Preliminary steps The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals.

$$49. \quad \int \frac{dx}{1+e^x}$$

$$50. \int \frac{x^4 + 1}{x^3 + 9x} \, dx$$

$$51. \quad \int \frac{3x^2 + 4x - 6}{x^2 - 3x + 2} \, dx$$

$$52. \int \frac{2x^3 + x^2 - 6x + 7}{x^2 + x - 6} dx$$

$$53. \int \frac{dt}{2 + e^{-t}}$$

$$54. \int \frac{dx}{e^x + e^{2x}}$$

$$55. \int \frac{\sec \theta}{1 + \sin \theta} \, d\theta \qquad \qquad 56. \int \sqrt{e^x + 1} \, dx$$

53.
$$\int 1 + \sin \theta$$
 54. $\int \frac{e^x}{(e^x - 1)(e^x + 2)} dx$ 58. $\int \frac{\cos x}{(\sin^3 x - 4 \sin x)} dx$

59.
$$\int \frac{dx}{(e^x + e^{-x})^2}$$

60-65. Fractional powers Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral.

60.
$$\int \frac{dx}{x - \sqrt[3]{x}}$$
; $x = u^3$

61.
$$\int \frac{dx}{\sqrt[4]{x+2}+1}; \ x+2=u^4$$

62.
$$\int \frac{dx}{x\sqrt{1+2x}}; \ 1+2x=u^2$$

$$63. \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}; \ x = u^6$$

$$64. \int \frac{dx}{x - \sqrt[4]{x}}; \ x = u^4$$

65.
$$\int \frac{dx}{\sqrt{1+\sqrt{x}}}$$
; $x=(u^2-1)^2$

- 66. Arc length of the natural logarithm Consider the curve $y = \ln x$.
 - a. Find the length of the curve from x = 1 to x = a and call it L(a). (Hint: The change of variables $u = \sqrt{x^2 + 1}$ allows evaluation by partial fractions.)
 - b. Graph L(a).
 - c. As a increases, L(a) increases as what power of a?

67-70. Repeated quadratic factors Refer to the summary box on p. 483 and evaluate the following integrals.

67.
$$\int \frac{2}{x(x^2+1)^2} \, dx$$

67.
$$\int \frac{2}{x(x^2+1)^2} dx$$
 68. $\int \frac{dx}{(x+1)(x^2+2x+2)^2}$

69.
$$\int \frac{x}{(x-1)(x^2+2x+2)^2} dx$$
 70.
$$\int \frac{x^3+1}{x(x^2+x+1)^2} dx$$

- 71. Two methods Evaluate $\int \frac{dx}{x^2-1}$ for x>1 in two ways: using partial fractions and a trigonometric substitution. Reconcile your
- 72-78. Rational functions of trigonometric functions An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution $u = \tan(x/2)$ or $x = 2 \tan^{-1} u$. The following relations are used in making this change of variables.

A:
$$dx = \frac{2}{1+u^2}du$$
 B: $\sin x = \frac{2u}{1+u^2}$ C: $\cos x = \frac{1-u^2}{1+u^2}$

72. Verify relation A by differentiating $x = 2 \tan^{-1} u$. Verify relations B and C using a right-triangle diagram and the double-angle

$$\sin x = 2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)$$
 and $\cos x = 2 \cos^2 \left(\frac{x}{2}\right) - 1$.

73. Evaluate
$$\int \frac{dx}{1 + \sin x}$$

73. Evaluate
$$\int \frac{dx}{1 + \sin x}$$
. 74. Evaluate $\int \frac{dx}{2 + \cos x}$.

75. Evaluate
$$\int \frac{dx}{1 - \cos x}$$

75. Evaluate
$$\int \frac{dx}{1-\cos x}$$
. 76. Evaluate $\int \frac{dx}{1+\sin x + \cos x}$.

77. Evaluate
$$\int \frac{d\theta}{\cos \theta - \sin \theta}$$
. 78. Evaluate $\int \sec t \, dt$.

3. Evaluate
$$\int \sec t \, dt$$
.

Applications

79. Three start-ups Three cars, A, B, and C, start from rest and accelerate along a line according to the following velocity functions:

$$v_A(t) = \frac{88t}{t+1}$$
 $v_B(t) = \frac{88t^2}{(t+1)^2}$ $v_C(t) = \frac{88t^2}{t^2+1}$

- a. After t = 1 s, which car has traveled farthest?
- **b.** After t = 5 s, which car has traveled farthest?
- c. Find the position functions for the three cars assuming that all cars start at the origin.
- d. Which car ultimately gains the lead and remains in front?
- **1180.** Skydiving A skydiver has a downward velocity given by

$$v(t) = V\left(\frac{1 - e^{-2gt/V}}{1 + e^{-2gt/V}}\right),\,$$

where t = 0 is the instant the skydiver starts falling, $g \approx 9.8 \,\mathrm{m/s^2}$ is the acceleration due to gravity, and V is the terminal velocity of the skydiver.

- **a.** Evaluate v(0) and $\lim v(t)$ and interpret these results.
- **b.** Graph the velocity function.
- c. Verify by integration that the position function is given by

$$s(t) = Vt + \frac{V^2}{g} \ln \left(\frac{1 + e^{-2gt/V}}{2} \right)$$

where
$$s'(t) = v(t)$$
 and $s(0) = 0$.

d. Graph the position function.

(See the Guided Projects for more details on free fall and terminal velocity.)

Additional Exercises

- 81. $\pi < \frac{22}{7}$ One of the earliest approximations to π is $\frac{22}{7}$. Verify that $0 < \int_{-1}^{1} \frac{x^4(1-x)^4}{1+x^2} dx = \frac{22}{7} - \pi$. Why can you conclude that $\pi < \frac{22}{\pi}$?
- 82. Challenge Show that with the change of variables $u = \sqrt{\tan x}$, the integral $\int \sqrt{\tan x} \, dx$ can be converted to an integral amenable to partial fractions. Evaluate $\int_0^{\pi/4} \sqrt{\tan x} \, dx$.

- 1. $\ln|x-2| + 2\ln|x+4| = \ln|(x-2)(x+4)^2|$ 2. A/(x-1) + B/(x+5) + C/(x-10)3. $A/x + B/x^2 + C/(x-3) + D/(x-3)^2 + E/(x-1)$